class: center, middle, inverse, title-slide # Disseminating Prediction Methods ## Avoiding Computational Bottlenecks and Developing User-Friendly APIs ### Byron C Jaeger ### Wake Forest University School of Medicine ### 2022/08/08 (updated: 2022-08-07) --- class: center, middle # (Bio)statisticians create methods that can engage with contemporary data and make valid conclusions --- class: center, middle # Statistical software allows these methods to be shared with investigators --- ## From proprietary to open-source When SAS and SPSS were prominent, methods were shared by incorporating them into proprietary software. -- As R and Python have become standard languages for data science, it has become more common for authors to write their own software for methods. --- ## obliqueRSF In 2019, I made the `obliqueRSF` R package - oblique random survival forests -- `obliqueRSF` had higher prediction accuracy versus: - `randomForestSRC`, - `ranger`, - `party`. But was also hundreds of times slower. --- <img src="index_files/figure-html/fig-time-one-1.png" style="display: block; margin: auto auto auto 0;" /> --- class: center, middle background-image: url("img/meme_slow_R.jpg") background-size: contain --- <img src="index_files/figure-html/fig-time-two-1.png" style="display: block; margin: auto auto auto 0;" /> --- <img src="index_files/figure-html/fig-eval-cstat-1.png" style="display: block; margin: auto auto auto 0;" /> --- <img src="index_files/figure-html/fig-eval-ipa-1.png" style="display: block; margin: auto auto auto 0;" /> --- background-image: url("img/aorsf-arxiv-paper.png") background-size: 85% ## aorsf paper (https://arxiv.org/abs/2208.01129) --- background-image: url("img/aorsf-arxiv-qr.png") background-size: 65% --- class: center, middle, inverse # Four guidelines for faster code --- class: center, middle # 1. Always be benchmarking --- class: center, middle # Why "always"? --- ## How to benchmark? __Step 1. Define a task:__ Count events per group (status of 1 `\(\Rightarrow\)` event, 3 groups) ```r # status = c(1, 0, 1, ...) status = sample(x = c(0L, 1L), size = 1e5, replace = TRUE) # group = c(2, 0, 1, ...) group = sample(x = c(0L, 1L, 2L), size = 1e5, replace = TRUE) ``` -- __Step 2. Define the reference competitors__ ```r # competitors: table() and tapply() table(status, group)[2, ] ``` ``` ## 0 1 2 ## 16836 16708 16831 ``` ```r tapply(status, group, FUN = sum) ``` ``` ## 0 1 2 ## 16836 16708 16831 ``` --- ## How to benchmark? __Step 3 (optional).__ Enter your own competitor(s)! <img src="ink/vecs_1.png" width="2063" /> --- ## How to benchmark? __Step 3 (optional).__ Enter your own competitor(s)! <img src="ink/vecs_2.png" width="2063" /> --- ## How to benchmark? __Step 3 (optional).__ Enter your own competitor(s)! <img src="ink/vecs_3.png" width="2063" /> --- ## How to benchmark? __Step 3 (optional).__ Enter your own competitor(s)! <img src="ink/vecs_4.png" width="2063" /> --- ## How to benchmark? __Step 3 (optional).__ Enter your own competitor(s)! ```cpp #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] NumericVector rcpp_count_dbl(NumericVector status, NumericVector group, int n_groups) { NumericVector out(n_groups); for( int i = 0; i < n_groups; i++ ){ for( int j = 0; j < group.length(); j++ ){ if(group[j] == i) out[i] += status[j]; } } return(out); } ``` --- ## How to benchmark? __Step 4. Off to the races:__ ```r library(microbenchmark) microbenchmark(table = table(status, group)[2, ], tapply = tapply(status, group, FUN = sum), rcpp_count_dbl = rcpp_count_dbl(status, group, 3)) ``` --
Benchmark demonstration: counting events in groups
table(), tapply(), and rcpp_count_dbl()
Function
Time, milliseconds
Minimum
25th %
Mean
Median
75th %
Maximum
table
5.5
6.0
7.8
6.1
6.3
73
tapply
2.1
2.5
3.2
2.5
2.6
81
rcpp_count_dbl
1.6
1.8
2.0
1.8
1.8
18
--- class: center, middle # 2. Trace your data --- ## Trace your data __Definition__ be notified when data are copied or cast to a different type -- (Copying and casting require additional memory, slowing down your code.) --- ## How to trace? Put the object you want to trace into `tracemem()`: ```r tracemem(status) tracemem(group) ``` R will now notify you if `status` or `group` are copied or cast to a different type. --- ## Here is a problem `rcpp_count_dbl` casts both `status` and `group` from integer to double ```r rcpp_count_dbl(status, group, n_groups = 3) ``` ``` ## tracemem[0x00007ff4fd830010 -> 0x00007ff4fd660010]: .Call rcpp_count_dbl eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group.block process_group withCallingHandlers process_file <Anonymous> <Anonymous> ## tracemem[0x00007ff4fd910010 -> 0x00007ff4fd3a0010]: .Call rcpp_count_dbl eval eval eval_with_user_handlers withVisible withCallingHandlers handle timing_fn evaluate_call <Anonymous> evaluate in_dir in_input_dir eng_r block_exec call_block process_group.block process_group withCallingHandlers process_file <Anonymous> <Anonymous> ``` ``` ## [1] 16836 16708 16831 ``` --- ## Here is a problem Our first `Rcpp` function expected numeric vectors. We gave it integers! ```cpp #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] *NumericVector rcpp_count_dbl(NumericVector status, * NumericVector group, int n_groups) { *NumericVector out(n_groups); for( int i = 0; i < n_groups; i++ ){ for( int j = 0; j < group.length(); j++ ){ if(group[j] == i) out[i] += status[j]; } } return(out); } ``` --- ## Let's fix that use __integerVector__ instead of __numericVector__ ```cpp #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] *IntegerVector rcpp_count_int(IntegerVector status, * IntegerVector group, int n_groups) { *IntegerVector out(n_groups); for( int i = 0; i < n_groups; i++ ){ for( int j = 0; j < group.length(); j++ ){ if(group[j] == i) out[i] += status[j]; } } return(out); } ``` --- ## Better `tracemem()` has been pacified! ```r rcpp_count_int(status, group, n_groups = 3) ``` ``` ## [1] 16836 16708 16831 ``` --- class: center, middle ## Faster
Benchmark demonstration: counting events in groups
table(), tapply(), and Rcpp functions
Function
Time, milliseconds
Minimum
25th %
Mean
Median
75th %
Maximum
table
5.5
6.0
7.8
6.1
6.3
73
tapply
2.1
2.5
3.2
2.5
2.6
81
rcpp_count_dbl
1.6
1.8
2.0
1.8
1.8
18
rcpp_count_int
1.4
1.4
1.4
1.4
1.4
2.4
--- class: center, middle # 3. Count your operations (Number of operations `\(\approx\)` speed of your code) --- ## How to count You don't have to be exact - think big picture --- ## How to count In our C++ function, we use `\(n\)` operations for each unique value in `group`, <img src="ink/vecs_1.png" width="2063" /> --- ## How to count In our C++ function, we use `\(n\)` operations for each unique value in `group`, <img src="ink/vecs_2.png" width="2063" /> --- ## How to count In our C++ function, we use `\(n\)` operations for each unique value in `group`, <img src="ink/vecs_3.png" width="2063" /> --- ## How to count In our C++ function, we use `\(n\)` operations for each unique value in `group`, <img src="ink/vecs_4.png" width="2063" /> --- ## How to count As `\(n, g \rightarrow \infty\)`, we use `\(\mathcal{O}(n \cdot g)\)` operations, where `\(g\)` = number of groups -- Can we reduce the operation cost? --- ## 1 loop instead of 2 <img src="ink/vecs_5.png" width="2263" /> --- ## 1 loop instead of 2 <img src="ink/vecs_6.png" width="2263" /> --- ## 1 loop instead of 2 <img src="ink/vecs_7.png" width="2263" /> --- ## 1 loop instead of 2 <img src="ink/vecs_8.png" width="2263" /> --- ## 1 loop instead of 2 <img src="ink/vecs_9.png" width="2263" /> --- ## 1 loop instead of 2 code adapted from `rcpp_count_int` ```cpp #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] IntegerVector rcpp_count_1loop_int(IntegerVector status, IntegerVector group, int n_groups) { IntegerVector out(n_groups); IntegerVector::iterator i; int j = 0; for(i = group.begin() ; i != group.end(); ++i, ++j){ out[*i] += status[j]; } return(out); } ``` --- class: center, middle ## Much faster!
Benchmark demonstration: counting events in groups
table(), tapply(), and Rcpp functions
Function
Time, milliseconds
Minimum
25th %
Mean
Median
75th %
Maximum
table
5.5
6.0
7.8
6.1
6.3
73
tapply
2.1
2.5
3.2
2.5
2.6
81
rcpp_count_dbl
1.6
1.8
2.0
1.8
1.8
18
rcpp_count_int
1.4
1.4
1.4
1.4
1.4
2.4
rcpp_count_1loop_int
0.18
0.19
0.19
0.19
0.19
1.1
--- class: center, middle # 4. Ride the Armadillo --- background-image: url("img/meme_aorsf_car.png") background-size: 65% --- background-image: url("img/arma.png") background-size: 90% ## Armadillo (http://arma.sourceforge.net/) --- ## Armadillo ```cpp #include <RcppArmadillo.h> #include <RcppArmadilloExtensions/sample.h> // [[Rcpp::depends(RcppArmadillo)]] using namespace Rcpp; using namespace arma; // [[Rcpp::export]] arma::ivec arma_count_1loop_int(arma::ivec& status, arma::ivec& group, arma::uword n_groups) { ivec out(n_groups); ivec::iterator i; uword j = 0; for(i = group.begin() ; i != group.end(); ++i, ++j){ out[*i] += status[j]; } return(out); } ``` --- class: center, middle ## Better! (almost perfect)
Benchmark demonstration: counting events in groups
table(), tapply(), and Rcpp functions
Function
Time, milliseconds
Minimum
25th %
Mean
Median
75th %
Maximum
table
5.5
6.0
7.8
6.1
6.3
73
tapply
2.1
2.5
3.2
2.5
2.6
81
rcpp_count_dbl
1.6
1.8
2.0
1.8
1.8
18
rcpp_count_int
1.4
1.4
1.4
1.4
1.4
2.4
rcpp_count_1loop_int
0.18
0.19
0.19
0.19
0.19
1.1
arma_count_1loop_int
0.07
0.07
0.08
0.07
0.08
1.0
sum
0.05
0.05
0.05
0.05
0.05
0.13
<!-- --- --> <!-- ## aorsf --> <!-- These guidelines were prominently used while I wrote `aorsf` --> <!-- -- --> <!-- 1. I ran benchmarks for each function --> <!-- + made multiple versions to discover what worked best. --> <!-- + learned a lot about C++ from this! --> <!-- -- --> <!-- 2. I used `tracemem` to discover unintentional copying --> <!-- + Did you know `glmnet` makes a copy of its data? --> <!-- + `obliqueRSF` calls `glmnet` hundreds if not thousands of times --> <!-- -- --> <!-- 3. I used Newton Raphson scoring instead of `glmnet` (__Fewer operations & no copying__). --> <!-- -- --> <!-- 4. Optimized with `RcppArmadillo` --> --- class: inverse, center, middle # Creating a Friendly API --- ## Names __be consistent__: use _one_ convention throughout your package - `snake_case` - `camelCase` - `SCREAMING_SNAKE` - `ConFuse.EVERY_one` (don't do it) Name functions with a __Noun__, then a __verb__, then __details__ (helps auto-completion & creates function families) - `orsf_vi_negate()`, `orsf_vi_anova()`, `orsf_vi_permute()` - `orsf_pd_ice()`, `orsf_pd_summary()` - `orsf_control_cph()`, `orsf_control_net()` __Exception:__ the modeling function is just the model name: - `lm()` - `glm()` - `orsf()` --- ## Check arguments Vet inputs and write error messages that spark joy ```r library(aorsf) *pbc_orsf$date_var <- lubridate::today() *pbc_orsf$char_var <- "I'm a character" fit <- orsf( data = pbc_orsf, formula = Surv(time, status) ~ date_var + char_var ) ``` ``` ## Error: some variables have unsupported type: ## <date_var> has type <Date> ## <char_var> has type <character> ## supported types are numeric, integer, units, factor, and ordered ``` --- ## Generic methods Include a generic `print` function (so your users won't hate you) ```r print(fit) ``` ``` ## ---------- Oblique random survival forest ## ## N observations: 276 ## N events: 111 ## N trees: 500 ## N predictors total: 17 ## N predictors per node: 5 ## Average leaves per tree: 24 ## Min observations in leaf: 5 ## Min events in leaf: 1 ## OOB stat value: 0.84 ## OOB stat type: Harrell's C-statistic ## ## ----------------------------------------- ``` --- ## Generic methods Include a generic `print` function (so your users won't hate you) ```r print(unclass(fit)) ``` ``` ## $forest ## $forest[[1]] ## $forest[[1]]$leaf_nodes ## [,1] [,2] ## [1,] 853 0.8333333 ## [2,] 859 0.5000000 ## [3,] 930 0.0000000 ## [4,] 41 0.8750000 ## [5,] 334 0.6250000 ## [6,] 348 0.5000000 ## [7,] 400 0.3750000 ## [8,] 549 0.2500000 ## [9,] 1191 0.0000000 ## [10,] 51 0.8571429 ## [11,] 131 0.5714286 ## [12,] 179 0.4285714 ## [13,] 223 0.2857143 ## [14,] 264 0.0000000 ## [15,] 1536 0.9861111 ## [16,] 2055 0.9488994 ## [17,] 2090 0.9302935 ## [18,] 2598 0.8970687 ## [19,] 3839 0.0000000 ## [20,] 999 0.7500000 ## [21,] 1690 0.2500000 ## [22,] 1925 0.0000000 ## [23,] 2466 0.8750000 ## [24,] 3853 0.6562500 ## [25,] 1212 0.6250000 ## [26,] 1847 0.4687500 ## [27,] 2769 0.3125000 ## [28,] 3170 0.1562500 ## [29,] 191 0.8000000 ## [30,] 388 0.4000000 ## [31,] 1434 0.2000000 ## [32,] 799 0.8000000 ## [33,] 974 0.2000000 ## [34,] 198 0.6000000 ## [35,] 515 0.2000000 ## [36,] 1012 0.8750000 ## [37,] 2540 0.3750000 ## [38,] 3282 0.1250000 ## [39,] 3574 0.0000000 ## [40,] 1152 0.8888889 ## [41,] 1297 0.5555556 ## [42,] 1827 0.1851852 ## [43,] 2386 0.0000000 ## [44,] 790 0.6666667 ## [45,] 980 0.5000000 ## [46,] 1356 0.0000000 ## [47,] 3244 0.0000000 ## [48,] 186 0.8333333 ## [49,] 611 0.6666667 ## [50,] 850 0.3333333 ## [51,] 1077 0.1666667 ## [52,] 1576 0.0000000 ## [53,] 304 0.4000000 ## [54,] 321 0.2000000 ## [55,] 750 0.0000000 ## [56,] 597 0.8000000 ## [57,] 673 0.6000000 ## [58,] 1080 0.4000000 ## [59,] 4191 0.6666667 ## [60,] 3086 0.2500000 ## [61,] 4079 0.0000000 ## [62,] 1360 0.5000000 ## [63,] 2689 0.0000000 ## [64,] 786 0.8000000 ## [65,] 1165 0.6000000 ## [66,] 1235 0.4000000 ## [67,] 1690 0.0000000 ## [68,] 2256 0.0000000 ## [69,] 1413 0.6000000 ## [70,] 1427 0.0000000 ## [71,] 3445 0.5000000 ## [72,] 3584 0.2500000 ## [73,] 3762 0.1250000 ## ## $forest[[1]]$leaf_node_index ## [,1] [,2] [,3] ## [1,] 12 0 2 ## [2,] 13 3 8 ## [3,] 14 9 13 ## [4,] 7 14 17 ## [5,] 15 18 18 ## [6,] 16 19 21 ## [7,] 17 22 23 ## [8,] 18 24 27 ## [9,] 20 28 30 ## [10,] 22 31 32 ## [11,] 28 33 34 ## [12,] 31 35 38 ## [13,] 32 39 42 ## [14,] 34 43 45 ## [15,] 37 46 46 ## [16,] 39 47 51 ## [17,] 40 52 54 ## [18,] 42 55 57 ## [19,] 43 58 58 ## [20,] 45 59 60 ## [21,] 46 61 62 ## [22,] 38 63 66 ## [23,] 47 67 67 ## [24,] 48 68 69 ## [25,] 44 70 72 ## ## $forest[[1]]$betas ## [,1] [,2] [,3] [,4] [,5] ## [1,] 0.262985825 0.725474028 -0.0014931813 0.94992351 0.006112226 ## [2,] 0.158193898 0.004359448 -0.0005942595 0.53572175 -0.368080944 ## [3,] 0.008543901 13.969268915 1.7872001887 0.05005997 -0.001765337 ## [4,] 0.029681631 -0.322230731 0.9396864685 -0.50915286 0.750941521 ## [5,] 0.045705758 0.003259517 0.0110829512 0.00000000 0.252493500 ## [,6] [,7] [,8] [,9] [,10] [,11] ## [1,] -5.650676e-05 -2.511740e+00 0 -3.49412714 0.39729552 -0.004885386 ## [2,] 8.456075e-01 -3.423573e-03 0 -0.07339156 0.05804965 -0.002203610 ## [3,] -3.723265e-02 6.201833e-05 0 0.00000000 -0.01866679 4.350385748 ## [4,] 7.066679e-03 -3.358876e-01 0 0.00000000 0.00000000 -0.002155869 ## [5,] 1.536013e-01 2.943154e-03 0 0.00000000 0.00000000 -0.002239028 ## [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] ## [1,] -0.514142372 0 0 0 0 0 0 0 -0.462549496 0 ## [2,] 0.790376936 0 0 0 0 0 0 0 0.497797737 0 ## [3,] -0.401328688 0 0 0 0 0 0 0 0.000852033 0 ## [4,] 0.979522952 0 0 0 0 0 0 0 -0.000212850 0 ## [5,] -0.003196098 0 0 0 0 0 0 0 0.647760398 0 ## [,22] [,23] [,24] [,25] [,26] [,27] ## [1,] -0.0318685407 0 0.005395293 -0.0076221656 0.012066060 -0.0044115983 ## [2,] 0.0063563407 0 -0.463340846 0.0003262873 0.322261169 -0.0588258725 ## [3,] -0.0006930693 0 0.006615146 0.0009290306 -0.021175594 -0.4307647310 ## [4,] 0.4374105755 0 0.046328187 1.4522319550 0.002408217 -0.0002553339 ## [5,] 0.7559888620 0 0.001594554 -0.6085498876 -2.937782840 -0.0171102718 ## [,28] [,29] [,30] [,31] [,32] [,33] [,34] ## [1,] 0.0002100783 0 0.205013123 -0.0176893511 0 0 0.2666386 ## [2,] -0.3311371928 0 -0.001299012 0.0001557652 0 0 1.4257512 ## [3,] -0.0182356208 0 0.236369518 0.9422256826 0 0 -3.0912894 ## [4,] -0.1720941062 0 0.000000000 0.0000000000 0 0 0.0000000 ## [5,] 0.0076723581 0 0.000000000 0.0000000000 0 0 0.0000000 ## [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] ## [1,] 0 -0.004318706 3.48094343 0 0 0 0 -1.594649988 0 ## [2,] 0 -0.005317667 -0.04349577 0 0 0 0 0.002894705 0 ## [3,] 0 0.000000000 0.00000000 0 0 0 0 0.000000000 0 ## [4,] 0 0.000000000 0.00000000 0 0 0 0 0.000000000 0 ## [5,] 0 0.000000000 0.00000000 0 0 0 0 0.000000000 0 ## [,44] [,45] [,46] [,47] [,48] [,49] ## [1,] 0 0 0 0 0 0 ## [2,] 0 0 0 0 0 0 ## [3,] 0 0 0 0 0 0 ## [4,] 0 0 0 0 0 0 ## [5,] 0 0 0 0 0 0 ## ## $forest[[1]]$col_indices ## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] ## [1,] 8 16 14 8 11 12 3 0 0 4 0 5 0 0 ## [2,] 2 14 15 17 0 0 14 0 1 11 15 10 0 0 ## [3,] 11 7 3 1 14 16 12 0 0 1 3 16 0 0 ## [4,] 1 6 2 16 6 13 6 0 0 0 11 4 0 0 ## [5,] 6 9 13 0 4 4 15 0 0 0 14 14 0 0 ## [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] ## [1,] 0 0 0 0 0 4 0 1 0 1 15 9 ## [2,] 0 0 0 0 0 8 0 13 0 8 9 8 ## [3,] 0 0 0 0 0 13 0 9 0 13 12 15 ## [4,] 0 0 0 0 0 11 0 17 0 2 16 14 ## [5,] 0 0 0 0 0 6 0 0 0 9 6 5 ## [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] ## [1,] 11 12 0 8 14 0 0 16 0 9 8 0 ## [2,] 1 17 0 12 12 0 0 0 0 14 13 0 ## [3,] 5 11 0 1 8 0 0 4 0 0 0 0 ## [4,] 12 0 0 0 0 0 0 0 0 0 0 0 ## [5,] 13 13 0 0 0 0 0 0 0 0 0 0 ## [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] ## [1,] 0 0 0 10 0 0 0 0 0 0 0 ## [2,] 0 0 0 9 0 0 0 0 0 0 0 ## [3,] 0 0 0 0 0 0 0 0 0 0 0 ## [4,] 0 0 0 0 0 0 0 0 0 0 0 ## [5,] 0 0 0 0 0 0 0 0 0 0 0 ## ## $forest[[1]]$cut_points ## [1] 4.12089249 9.11241423 3.35725528 1.13029653 -0.06338726 1.83650418 ## [7] -2.31065152 0.00000000 -4.73905557 3.01329103 -0.42466841 -0.82499625 ## [13] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ## [19] 0.00000000 0.98365264 0.00000000 0.30984580 0.00000000 1.53738164 ## [25] 16.35000609 -0.27841756 -6.74177416 -0.83251714 0.00000000 8.64789556 ## [31] 1.64580492 0.00000000 0.00000000 1.61411684 0.00000000 -1.89815296 ## [37] -1.76669261 0.00000000 0.00000000 0.00000000 0.00000000 -2.76641769 ## [43] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ## [49] 0.00000000 ## ## $forest[[1]]$children_left ## [,1] ## [1,] 1 ## [2,] 3 ## [3,] 5 ## [4,] 7 ## [5,] 9 ## [6,] 11 ## [7,] 13 ## [8,] 0 ## [9,] 15 ## [10,] 17 ## [11,] 19 ## [12,] 21 ## [13,] 0 ## [14,] 0 ## [15,] 0 ## [16,] 0 ## [17,] 0 ## [18,] 0 ## [19,] 0 ## [20,] 23 ## [21,] 0 ## [22,] 25 ## [23,] 0 ## [24,] 27 ## [25,] 29 ## [26,] 31 ## [27,] 33 ## [28,] 35 ## [29,] 0 ## [30,] 37 ## [31,] 39 ## [32,] 0 ## [33,] 0 ## [34,] 41 ## [35,] 0 ## [36,] 43 ## [37,] 45 ## [38,] 0 ## [39,] 0 ## [40,] 0 ## [41,] 0 ## [42,] 47 ## [43,] 0 ## [44,] 0 ## [45,] 0 ## [46,] 0 ## [47,] 0 ## [48,] 0 ## [49,] 0 ## ## $forest[[1]]$rows_oobag ## [,1] ## [1,] 2 ## [2,] 3 ## [3,] 4 ## [4,] 6 ## [5,] 11 ## [6,] 16 ## [7,] 21 ## [8,] 23 ## [9,] 25 ## [10,] 29 ## [11,] 30 ## [12,] 31 ## [13,] 32 ## [14,] 34 ## [15,] 35 ## [16,] 39 ## [17,] 41 ## [18,] 42 ## [19,] 46 ## [20,] 47 ## [21,] 49 ## [22,] 52 ## [23,] 62 ## [24,] 68 ## [25,] 70 ## [26,] 72 ## [27,] 73 ## [28,] 80 ## [29,] 83 ## [30,] 87 ## [31,] 88 ## [32,] 98 ## [33,] 104 ## [34,] 105 ## [35,] 107 ## [36,] 108 ## [37,] 114 ## [38,] 115 ## [39,] 120 ## [40,] 122 ## [41,] 123 ## [42,] 124 ## [43,] 130 ## [44,] 133 ## [45,] 137 ## [46,] 142 ## [47,] 151 ## [48,] 155 ## [49,] 156 ## [50,] 159 ## [51,] 162 ## [52,] 166 ## [53,] 168 ## [54,] 169 ## [55,] 171 ## [56,] 172 ## [57,] 174 ## [58,] 175 ## [59,] 176 ## [60,] 177 ## [61,] 180 ## [62,] 182 ## [63,] 184 ## [64,] 185 ## [65,] 192 ## [66,] 196 ## [67,] 199 ## [68,] 200 ## [69,] 204 ## [70,] 205 ## [71,] 208 ## [72,] 210 ## [73,] 211 ## [74,] 212 ## [75,] 214 ## [76,] 215 ## [77,] 221 ## [78,] 223 ## [79,] 225 ## [80,] 227 ## [81,] 228 ## [82,] 230 ## [83,] 236 ## [84,] 237 ## [85,] 239 ## [86,] 241 ## [87,] 243 ## [88,] 245 ## [89,] 248 ## [90,] 250 ## [91,] 261 ## [92,] 263 ## [93,] 269 ## [94,] 271 ## [95,] 275 ## ## ## ## $surv_oobag ## [,1] ## [1,] 0.0000000 ## [2,] 0.0000000 ## [3,] 0.0000000 ## [4,] 0.0000000 ## [5,] 0.0000000 ## [6,] 0.9861111 ## [7,] 0.0000000 ## [8,] 0.0000000 ## [9,] 0.0000000 ## [10,] 0.0000000 ## [11,] 0.0000000 ## [12,] 1.0000000 ## [13,] 0.0000000 ## [14,] 0.0000000 ## [15,] 1.0000000 ## [16,] 0.0000000 ## [17,] 0.0000000 ## [18,] 0.0000000 ## [19,] 1.0000000 ## [20,] 0.0000000 ## [21,] 0.0000000 ## [22,] 0.0000000 ## [23,] 1.0000000 ## [24,] 1.0000000 ## [25,] 0.0000000 ## [26,] 0.0000000 ## [27,] 0.0000000 ## [28,] 0.0000000 ## [29,] 0.0000000 ## [30,] 0.0000000 ## [31,] 0.0000000 ## [32,] 0.0000000 ## [33,] 1.0000000 ## [34,] 0.9861111 ## [35,] 0.0000000 ## [36,] 0.0000000 ## [37,] 0.9861111 ## [38,] 0.5000000 ## [39,] 0.0000000 ## [40,] 0.0000000 ## [41,] 0.9861111 ## [42,] 0.4000000 ## [43,] 0.0000000 ## [44,] 0.0000000 ## [45,] 0.0000000 ## [46,] 0.0000000 ## [47,] 0.0000000 ## [48,] 0.0000000 ## [49,] 0.0000000 ## [50,] 1.0000000 ## [51,] 0.0000000 ## [52,] 1.0000000 ## [53,] 1.0000000 ## [54,] 0.0000000 ## [55,] 1.0000000 ## [56,] 0.0000000 ## [57,] 0.0000000 ## [58,] 0.0000000 ## [59,] 0.0000000 ## [60,] 1.0000000 ## [61,] 0.0000000 ## [62,] 0.0000000 ## [63,] 0.0000000 ## [64,] 0.0000000 ## [65,] 0.0000000 ## [66,] 1.0000000 ## [67,] 1.0000000 ## [68,] 0.0000000 ## [69,] 0.2000000 ## [70,] 1.0000000 ## [71,] 0.0000000 ## [72,] 0.0000000 ## [73,] 1.0000000 ## [74,] 0.0000000 ## [75,] 1.0000000 ## [76,] 0.0000000 ## [77,] 0.0000000 ## [78,] 0.0000000 ## [79,] 0.5000000 ## [80,] 0.0000000 ## [81,] 1.0000000 ## [82,] 0.0000000 ## [83,] 0.0000000 ## [84,] 0.0000000 ## [85,] 0.0000000 ## [86,] 0.0000000 ## [87,] 0.0000000 ## [88,] 1.0000000 ## [89,] 0.0000000 ## [90,] 0.9861111 ## [91,] 0.2000000 ## [92,] 0.0000000 ## [93,] 0.0000000 ## [94,] 0.0000000 ## [95,] 0.9861111 ## [96,] 0.0000000 ## [97,] 1.0000000 ## [98,] 0.0000000 ## [99,] 0.0000000 ## [100,] 0.0000000 ## [101,] 0.0000000 ## [102,] 0.0000000 ## [103,] 0.0000000 ## [104,] 0.0000000 ## [105,] 0.2500000 ## [106,] 0.0000000 ## [107,] 0.0000000 ## [108,] 0.0000000 ## [109,] 0.0000000 ## [110,] 1.0000000 ## [111,] 0.0000000 ## [112,] 0.0000000 ## [113,] 0.0000000 ## [114,] 0.0000000 ## [115,] 0.0000000 ## [116,] 1.0000000 ## [117,] 0.0000000 ## [118,] 1.0000000 ## [119,] 0.9861111 ## [120,] 0.0000000 ## [121,] 0.0000000 ## [122,] 0.0000000 ## [123,] 0.0000000 ## [124,] 0.9861111 ## [125,] 0.9861111 ## [126,] 0.0000000 ## [127,] 1.0000000 ## [128,] 0.0000000 ## [129,] 0.0000000 ## [130,] 0.0000000 ## [131,] 0.8750000 ## [132,] 0.0000000 ## [133,] 0.0000000 ## [134,] 0.9861111 ## [135,] 0.8750000 ## [136,] 0.9861111 ## [137,] 0.0000000 ## [138,] 0.0000000 ## [139,] 1.0000000 ## [140,] 0.0000000 ## [141,] 0.9861111 ## [142,] 1.0000000 ## [143,] 0.0000000 ## [144,] 0.0000000 ## [145,] 0.0000000 ## [146,] 1.0000000 ## [147,] 1.0000000 ## [148,] 0.0000000 ## [149,] 0.0000000 ## [150,] 0.9861111 ## [151,] 0.9861111 ## [152,] 0.0000000 ## [153,] 0.0000000 ## [154,] 0.0000000 ## [155,] 0.0000000 ## [156,] 0.9861111 ## [157,] 0.9861111 ## [158,] 0.0000000 ## [159,] 0.0000000 ## [160,] 0.0000000 ## [161,] 0.0000000 ## [162,] 0.0000000 ## [163,] 0.0000000 ## [164,] 0.0000000 ## [165,] 0.0000000 ## [166,] 0.4000000 ## [167,] 0.0000000 ## [168,] 0.0000000 ## [169,] 0.0000000 ## [170,] 0.9861111 ## [171,] 0.9861111 ## [172,] 0.0000000 ## [173,] 1.0000000 ## [174,] 0.0000000 ## [175,] 0.9861111 ## [176,] 0.0000000 ## [177,] 0.0000000 ## [178,] 0.9861111 ## [179,] 0.0000000 ## [180,] 0.0000000 ## [181,] 0.0000000 ## [182,] 0.9861111 ## [183,] 0.0000000 ## [184,] 1.0000000 ## [185,] 0.0000000 ## [186,] 0.0000000 ## [187,] 0.0000000 ## [188,] 0.0000000 ## [189,] 0.9861111 ## [190,] 0.0000000 ## [191,] 0.0000000 ## [192,] 0.0000000 ## [193,] 0.0000000 ## [194,] 0.0000000 ## [195,] 0.0000000 ## [196,] 0.9861111 ## [197,] 0.0000000 ## [198,] 0.0000000 ## [199,] 0.0000000 ## [200,] 0.0000000 ## [201,] 0.0000000 ## [202,] 0.0000000 ## [203,] 0.0000000 ## [204,] 0.0000000 ## [205,] 0.0000000 ## [206,] 1.0000000 ## [207,] 0.0000000 ## [208,] 0.0000000 ## [209,] 0.0000000 ## [210,] 0.0000000 ## [211,] 0.0000000 ## [212,] 0.0000000 ## [213,] 0.0000000 ## [214,] 1.0000000 ## [215,] 0.0000000 ## [216,] 0.0000000 ## [217,] 0.0000000 ## [218,] 0.0000000 ## [219,] 1.0000000 ## [220,] 0.0000000 ## [221,] 0.2500000 ## [222,] 0.0000000 ## [223,] 0.0000000 ## [224,] 0.0000000 ## [225,] 0.0000000 ## [226,] 1.0000000 ## [227,] 0.0000000 ## [228,] 1.0000000 ## [229,] 0.2000000 ## [230,] 0.0000000 ## [231,] 0.0000000 ## [232,] 0.0000000 ## [233,] 0.0000000 ## [234,] 0.2000000 ## [235,] 0.0000000 ## [236,] 1.0000000 ## [237,] 0.9861111 ## [238,] 0.0000000 ## [239,] 0.0000000 ## [240,] 1.0000000 ## [241,] 0.9861111 ## [242,] 0.0000000 ## [243,] 1.0000000 ## [244,] 0.0000000 ## [245,] 0.0000000 ## [246,] 0.0000000 ## [247,] 0.9861111 ## [248,] 0.0000000 ## [249,] 0.0000000 ## [250,] 0.0000000 ## [251,] 0.0000000 ## [252,] 0.0000000 ## [253,] 0.0000000 ## [254,] 0.0000000 ## [255,] 0.0000000 ## [256,] 0.0000000 ## [257,] 0.0000000 ## [258,] 0.0000000 ## [259,] 0.0000000 ## [260,] 1.0000000 ## [261,] 0.0000000 ## [262,] 1.0000000 ## [263,] 0.0000000 ## [264,] 0.0000000 ## [265,] 1.0000000 ## [266,] 0.0000000 ## [267,] 0.0000000 ## [268,] 0.0000000 ## [269,] 0.0000000 ## [270,] 0.9861111 ## [271,] 0.0000000 ## [272,] 0.0000000 ## [273,] 0.0000000 ## [274,] 0.0000000 ## [275,] 0.9861111 ## [276,] 0.0000000 ## ## $pred_horizon ## [1] 1788 ## ## $eval_oobag ## $eval_oobag$stat_values ## [,1] ## [1,] 0.5159148 ## ## $eval_oobag$stat_type ## [1] "Harrell's C-statistic" ## ## ## $importance ## edema_1 ascites_1 trt_placebo age bili protime ## 1.00000000 0.66666667 0.27272727 0.22222222 0.21428571 0.20000000 ## hepato_1 ast copper platelet alk.phos chol ## 0.20000000 0.18181818 0.16666667 0.14285714 0.11111111 0.07142857 ## stage trig albumin edema_0.5 spiders_1 sex_f ## 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ## ## $data ## time status trt age sex ascites hepato spiders edema bili ## 1 400 1 d_penicill_main 58.76523 f 1 1 1 1 14.5 ## 2 4500 0 d_penicill_main 56.44627 f 0 1 1 0 1.1 ## 3 1012 1 d_penicill_main 70.07255 m 0 0 0 0.5 1.4 ## 4 1925 1 d_penicill_main 54.74059 f 0 1 1 0.5 1.8 ## 5 1504 0 placebo 38.10541 f 0 1 1 0 3.4 ## 7 1832 0 placebo 55.53457 f 0 1 0 0 1.0 ## 8 2466 1 placebo 53.05681 f 0 0 0 0 0.3 ## 9 2400 1 d_penicill_main 42.50787 f 0 0 1 0 3.2 ## 10 51 1 placebo 70.55989 f 1 0 1 1 12.6 ## 11 3762 1 placebo 53.71389 f 0 1 1 0 1.4 ## 12 304 1 placebo 59.13758 f 0 0 1 0 3.6 ## 13 3577 0 placebo 45.68925 f 0 0 0 0 0.7 ## 15 3584 1 d_penicill_main 64.64613 f 0 0 0 0 0.8 ## 16 3672 0 placebo 40.44353 f 0 0 0 0 0.7 ## 17 769 1 placebo 52.18344 f 0 1 0 0 2.7 ## 18 131 1 d_penicill_main 53.93018 f 0 1 1 1 11.4 ## 19 4232 0 d_penicill_main 49.56057 f 0 1 0 0.5 0.7 ## 20 1356 1 placebo 59.95346 f 0 1 0 0 5.1 ## 21 3445 0 placebo 64.18891 m 0 1 1 0 0.6 ## 22 673 1 d_penicill_main 56.27652 f 0 0 1 0 3.4 ## 23 264 1 placebo 55.96715 f 1 1 1 1 17.4 ## 24 4079 1 d_penicill_main 44.52019 m 0 1 0 0 2.1 ## 25 4127 0 placebo 45.07324 f 0 0 0 0 0.7 ## 26 1444 1 placebo 52.02464 f 0 1 1 0 5.2 ## 27 77 1 placebo 54.43943 f 1 1 1 0.5 21.6 ## 28 549 1 placebo 44.94730 f 1 1 1 1 17.2 ## 29 4509 0 placebo 63.87680 f 0 0 0 0 0.7 ## 30 321 1 placebo 41.38535 f 0 1 1 0 3.6 ## 31 3839 1 placebo 41.55236 f 0 1 0 0 4.7 ## 32 4523 0 placebo 53.99589 f 0 1 0 0 1.8 ## 33 3170 1 placebo 51.28268 f 0 0 0 0 0.8 ## 34 3933 0 d_penicill_main 52.06023 f 0 0 0 0 0.8 ## 35 2847 1 placebo 48.61875 f 0 0 0 0 1.2 ## 36 3611 0 placebo 56.41068 f 0 0 0 0 0.3 ## 37 223 1 d_penicill_main 61.72758 f 1 1 0 1 7.1 ## 38 3244 1 placebo 36.62697 f 0 1 1 0 3.3 ## 39 2297 1 d_penicill_main 55.39220 f 0 1 0 0 0.7 ## 43 4556 0 d_penicill_main 48.87064 f 0 0 0 0 1.1 ## 44 3428 1 placebo 37.58248 f 0 1 1 1 3.3 ## 46 2256 1 d_penicill_main 45.79877 f 0 1 0 0 5.7 ## 47 2576 0 placebo 47.42779 f 0 0 0 0 0.5 ## 48 4427 0 placebo 49.13621 m 0 0 0 0 1.9 ## 50 2598 1 d_penicill_main 53.50856 f 0 1 0 0 1.1 ## 51 3853 1 placebo 52.08761 f 0 0 0 0 0.8 ## 52 2386 1 d_penicill_main 50.54073 m 0 0 0 0 6.0 ## 54 1434 1 d_penicill_main 39.19781 f 1 1 1 1 1.3 ## 55 1360 1 d_penicill_main 65.76318 m 0 0 0 0 1.8 ## 56 1847 1 placebo 33.61807 f 0 1 1 0 1.1 ## 57 3282 1 d_penicill_main 53.57153 f 0 1 0 0.5 2.3 ## 59 2224 1 d_penicill_main 40.39425 f 0 1 1 0 0.8 ## 60 4365 0 d_penicill_main 58.38193 f 0 0 0 0 0.9 ## 61 4256 0 placebo 43.89870 m 0 0 0 0 0.6 ## 62 3090 1 placebo 60.70637 f 1 0 0 0 1.3 ## 63 859 1 placebo 46.62834 f 0 0 1 1 22.5 ## 64 1487 1 placebo 62.90760 f 0 1 0 0 2.1 ## 65 3992 0 d_penicill_main 40.20260 f 0 0 0 0 1.2 ## 66 4191 1 d_penicill_main 46.45311 m 0 1 0 0 1.4 ## 67 2769 1 placebo 51.28816 f 0 0 0 0 1.1 ## 68 4039 0 d_penicill_main 32.61328 f 0 0 0 0 0.7 ## 69 1170 1 d_penicill_main 49.33881 f 0 1 1 0.5 20.0 ## 71 4196 0 placebo 48.84600 f 0 1 0 0 1.2 ## 72 4184 0 placebo 32.49281 f 0 0 0 0 0.5 ## 73 4190 0 placebo 38.49418 f 0 0 0 0 0.7 ## 74 1827 1 d_penicill_main 51.92060 f 0 1 1 0 8.4 ## 75 1191 1 d_penicill_main 43.51814 f 1 1 1 0.5 17.1 ## 76 71 1 d_penicill_main 51.94251 f 0 1 1 0.5 12.2 ## 77 326 1 placebo 49.82615 f 0 1 1 0.5 6.6 ## 78 1690 1 d_penicill_main 47.94524 f 0 1 0 0 6.3 ## 79 3707 0 d_penicill_main 46.51608 f 0 1 0 0 0.8 ## 80 890 1 placebo 67.41136 m 0 1 0 0 7.2 ## 81 2540 1 d_penicill_main 63.26352 f 0 1 1 0 14.4 ## 82 3574 1 d_penicill_main 67.31006 f 0 0 0 0 4.5 ## 83 4050 0 d_penicill_main 56.01369 f 0 1 0 0.5 1.3 ## 84 4032 0 placebo 55.83025 f 0 0 0 0 0.4 ## 85 3358 1 placebo 47.21697 f 0 1 0 0 2.1 ## 86 1657 1 d_penicill_main 52.75838 f 0 1 1 0 5.0 ## 87 198 1 d_penicill_main 37.27858 f 0 0 0 0 1.1 ## 88 2452 0 placebo 41.39357 f 0 0 0 0.5 0.6 ## 89 1741 1 d_penicill_main 52.44353 f 0 1 0 0 2.0 ## 90 2689 1 d_penicill_main 33.47570 m 0 0 0 0 1.6 ## 91 460 1 placebo 45.60712 f 0 1 1 0.5 5.0 ## 92 388 1 d_penicill_main 76.70910 f 1 0 0 1 1.4 ## 93 3913 0 d_penicill_main 36.53388 f 0 0 0 0 1.3 ## 94 750 1 d_penicill_main 53.91650 f 0 1 1 0 3.2 ## 97 611 1 placebo 71.89322 m 0 1 0 0.5 2.0 ## 98 3823 0 d_penicill_main 28.88433 f 0 0 0 0 1.0 ## 99 3820 0 placebo 48.46817 m 0 0 0 0 1.8 ## 100 552 1 placebo 51.46886 m 0 1 0 0 2.3 ## 101 3581 0 placebo 44.95003 f 0 0 0 0 0.9 ## 102 3099 0 d_penicill_main 56.56947 f 0 0 0 0 0.9 ## 103 110 1 placebo 48.96372 f 1 1 1 1 2.5 ## 104 3086 1 d_penicill_main 43.01711 f 0 0 0 0 1.1 ## 105 3092 0 placebo 34.03970 f 0 1 0 0 1.1 ## 107 3388 0 placebo 62.52156 f 0 0 0 0 0.6 ## 108 2583 1 d_penicill_main 50.35729 f 0 0 0 0 0.4 ## 109 2504 0 placebo 44.06297 f 0 0 0 0 0.5 ## 110 2105 1 d_penicill_main 38.91034 f 0 1 1 0 1.9 ## 111 2350 0 d_penicill_main 41.15264 f 0 0 0 0 5.5 ## 112 3445 1 placebo 55.45791 f 0 1 1 0 2.0 ## 113 980 1 d_penicill_main 51.23340 f 0 1 1 0 6.7 ## 114 3395 1 placebo 52.82683 m 0 0 0 0 3.2 ## 115 3422 0 placebo 42.63929 f 0 0 1 0 0.7 ## 116 3336 0 d_penicill_main 61.07050 f 0 0 1 0.5 3.0 ## 117 1083 1 d_penicill_main 49.65640 f 0 1 1 0 6.5 ## 118 2288 1 d_penicill_main 48.85421 f 0 1 0 0 3.5 ## 119 515 1 d_penicill_main 54.25599 f 0 0 1 0 0.6 ## 120 2033 0 d_penicill_main 35.15127 m 0 0 0 0 3.5 ## 121 191 1 placebo 67.90691 m 1 1 0 1 1.3 ## 122 3297 0 d_penicill_main 55.43600 f 0 0 0 0 0.6 ## 124 3069 0 d_penicill_main 52.88980 m 0 1 0 0 0.6 ## 125 2468 0 placebo 47.18138 f 0 1 0 0 1.3 ## 127 3255 0 placebo 44.10404 f 0 0 0 0 0.5 ## 130 1413 1 placebo 44.22724 f 0 1 1 0 17.4 ## 131 850 1 placebo 62.00137 f 0 1 1 0 2.8 ## 132 2944 0 d_penicill_main 40.55305 f 0 0 0 0 1.9 ## 133 2796 1 placebo 62.64476 m 0 0 0 0 1.5 ## 134 3149 0 placebo 42.33539 f 0 0 0 0 0.7 ## 135 3150 0 d_penicill_main 42.96783 f 0 0 0 0 0.4 ## 136 3098 0 d_penicill_main 55.96167 f 0 0 0 0 0.8 ## 137 2990 0 d_penicill_main 62.86105 f 0 0 0 0 1.1 ## 138 1297 1 d_penicill_main 51.24983 m 0 1 0 0 7.3 ## 139 2106 0 placebo 46.76249 f 0 1 0 0 1.1 ## 140 3059 0 d_penicill_main 54.07529 f 0 1 0 0 1.1 ## 141 3050 0 d_penicill_main 47.03628 f 0 0 0 0 0.9 ## 142 2419 1 placebo 55.72621 f 0 1 0 0 1.0 ## 143 786 1 placebo 46.10267 f 0 1 0 0 2.9 ## 144 943 1 placebo 52.28747 f 0 1 0 0.5 28.0 ## 145 2976 0 placebo 51.20055 f 0 0 1 0 0.7 ## 147 2995 0 d_penicill_main 75.01164 f 0 0 0 0.5 1.2 ## 148 1427 1 placebo 30.86379 f 0 1 0 0 7.2 ## 149 762 1 d_penicill_main 61.80424 m 0 1 1 0.5 3.0 ## 151 2870 0 d_penicill_main 55.04175 f 0 0 0 0 0.9 ## 152 1152 1 d_penicill_main 69.94114 m 0 1 0 0 2.3 ## 153 2863 0 d_penicill_main 49.60438 f 0 0 0 0 0.5 ## 154 140 1 d_penicill_main 69.37714 m 0 0 1 1 2.4 ## 155 2666 0 placebo 43.55647 f 0 1 1 0.5 0.6 ## 156 853 1 placebo 59.40862 f 0 1 0 0 25.5 ## 157 2835 0 placebo 48.75838 f 0 0 0 0 0.6 ## 158 2475 0 d_penicill_main 36.49281 f 0 0 0 0 3.4 ## 159 1536 1 placebo 45.76044 m 0 0 0 0 2.5 ## 160 2772 0 placebo 57.37166 f 0 0 0 0 0.6 ## 161 2797 0 placebo 42.74333 f 0 0 0 0 2.3 ## 162 186 1 placebo 58.81725 f 0 1 1 0 3.2 ## 163 2055 1 d_penicill_main 53.49760 f 0 0 0 0 0.3 ## 165 1077 1 d_penicill_main 53.30595 m 0 1 0 0 4.0 ## 166 2721 0 placebo 41.35524 f 0 1 0 0 5.7 ## 167 1682 1 d_penicill_main 60.95825 m 0 1 0 0 0.9 ## 169 1212 1 placebo 35.49076 f 0 0 0 0 1.3 ## 170 2692 0 d_penicill_main 48.66256 f 0 0 0 0 1.2 ## 172 2301 0 placebo 49.86995 f 0 0 1 0 1.3 ## 173 2657 0 d_penicill_main 30.27515 f 0 1 1 0 3.0 ## 175 2624 0 placebo 52.15332 f 0 0 0 0 0.8 ## 177 2609 0 placebo 55.45243 f 0 0 0 0 0.9 ## 179 2573 0 placebo 43.94251 f 0 1 0 0 1.8 ## 180 2563 0 placebo 42.56810 f 0 0 0 0 4.7 ## 181 2556 0 d_penicill_main 44.56947 f 0 1 1 0 1.4 ## 183 2241 0 placebo 40.26010 f 0 0 0 0 0.5 ## 184 974 1 placebo 37.60712 f 0 1 0 0 11.0 ## 185 2527 0 d_penicill_main 48.36140 f 0 0 0 0 0.8 ## 186 1576 1 d_penicill_main 70.83641 f 0 0 1 0.5 2.0 ## 187 733 1 placebo 35.79192 f 0 1 0 0 14.0 ## 188 2332 0 d_penicill_main 62.62286 f 0 1 0 0 0.7 ## 189 2456 0 placebo 50.64750 f 0 1 0 0 1.3 ## 191 216 1 placebo 52.69268 f 1 1 1 0 24.5 ## 192 2443 0 d_penicill_main 52.72005 f 0 1 0 0 0.9 ## 193 797 1 placebo 56.77207 f 0 0 0 0 10.8 ## 194 2449 0 d_penicill_main 44.39699 f 0 0 0 0 1.5 ## 195 2330 0 d_penicill_main 29.55510 f 0 1 0 0 3.7 ## 196 2363 0 d_penicill_main 57.04038 f 0 1 1 0 1.4 ## 197 2365 0 d_penicill_main 44.62697 f 0 0 0 0 0.6 ## 198 2357 0 placebo 35.79740 f 0 0 1 0 0.7 ## 199 1592 0 d_penicill_main 40.71732 f 0 0 0 0 2.1 ## 200 2318 0 placebo 32.23272 f 0 0 1 0 4.7 ## 201 2294 0 placebo 41.09240 f 0 1 0 0 0.6 ## 202 2272 0 d_penicill_main 61.63997 f 0 0 0 0 0.5 ## 203 2221 0 placebo 37.05681 f 0 1 0 0 0.5 ## 204 2090 1 placebo 62.57906 f 0 0 0 0 0.7 ## 206 2255 0 d_penicill_main 61.99042 f 0 0 0 0 0.6 ## 208 904 1 d_penicill_main 61.29500 f 0 1 0 0 3.9 ## 209 2216 0 placebo 52.62423 f 0 1 1 0 0.7 ## 210 2224 0 placebo 49.76318 m 0 1 0 0 0.9 ## 212 2176 0 placebo 47.26352 f 0 0 0 0 1.2 ## 213 2178 0 d_penicill_main 50.20397 f 0 0 1 0 0.5 ## 214 1786 1 placebo 69.34702 f 0 1 0 0 0.9 ## 215 1080 1 placebo 41.16906 f 0 0 0 0 5.9 ## 217 790 1 placebo 36.07940 f 0 1 0 0 11.4 ## 219 2157 0 placebo 42.71321 f 0 0 0 0 1.6 ## 220 1235 1 d_penicill_main 63.63039 f 0 0 1 0 3.8 ## 221 2050 0 placebo 56.62971 f 0 1 0 0 0.9 ## 222 597 1 placebo 46.26420 f 0 1 0 0 4.5 ## 223 334 1 d_penicill_main 61.24298 f 1 1 0 1 14.1 ## 224 1945 0 d_penicill_main 38.62012 f 0 0 0 0 1.0 ## 225 2022 0 d_penicill_main 38.77070 f 0 0 0 0 0.7 ## 226 1978 0 placebo 56.69541 f 0 1 0 0 0.5 ## 227 999 1 d_penicill_main 58.95140 m 0 0 0 0 2.3 ## 228 1967 0 placebo 36.92266 f 0 0 0 0 0.7 ## 229 348 1 d_penicill_main 62.41478 f 1 1 0 0.5 4.5 ## 230 1979 0 placebo 34.60917 f 0 1 1 0 3.3 ## 231 1165 1 placebo 58.33539 f 0 1 1 0 3.4 ## 232 1951 0 d_penicill_main 50.18207 f 0 1 0 0 0.4 ## 233 1932 0 d_penicill_main 42.68583 f 0 1 1 0 0.9 ## 234 1776 0 placebo 34.37919 f 0 0 0 0 0.9 ## 235 1882 0 placebo 33.18275 f 0 1 0 0 13.0 ## 236 1908 0 d_penicill_main 38.38193 f 0 1 1 0 1.5 ## 237 1882 0 d_penicill_main 59.76181 f 0 1 0 0 1.6 ## 239 694 1 d_penicill_main 46.78987 f 0 1 1 0 0.8 ## 240 1831 0 d_penicill_main 56.07940 f 0 0 0 0 0.4 ## 241 837 0 placebo 41.37440 f 0 1 1 0 4.4 ## 242 1810 0 d_penicill_main 64.57221 f 0 1 0 0 1.9 ## 243 930 1 placebo 67.48802 f 0 1 0 0 8.0 ## 244 1690 1 d_penicill_main 44.82957 f 0 0 1 0 3.9 ## 245 1790 0 placebo 45.77139 f 0 1 0 0 0.6 ## 246 1435 0 d_penicill_main 32.95003 f 0 1 0 0 2.1 ## 247 732 0 d_penicill_main 41.22108 f 0 1 0 0 6.1 ## 248 1785 0 placebo 55.41684 f 0 1 0 0 0.8 ## 249 1783 0 d_penicill_main 47.98084 f 0 0 1 0 1.3 ## 250 1769 0 placebo 40.79124 f 0 1 0 0 0.6 ## 251 1457 0 d_penicill_main 56.97467 f 0 0 0 0 0.5 ## 252 1770 0 d_penicill_main 68.46270 f 0 1 1 0 1.1 ## 253 1765 0 d_penicill_main 78.43943 m 1 1 1 0 7.1 ## 254 737 0 d_penicill_main 39.85763 f 0 1 1 0 3.1 ## 255 1735 0 placebo 35.31006 f 0 1 1 0 0.7 ## 256 1701 0 d_penicill_main 31.44422 f 0 0 0 0 1.1 ## 257 1614 0 d_penicill_main 58.26420 f 0 0 0 0 0.5 ## 258 1702 0 d_penicill_main 51.48802 f 0 0 0 0 1.1 ## 259 1615 0 placebo 59.96988 f 0 1 0 0 3.1 ## 260 1656 0 placebo 74.52430 m 0 1 0 0 5.6 ## 262 1666 0 placebo 42.78713 f 0 1 0 0 2.8 ## 263 1301 0 placebo 34.87474 f 0 1 1 0.5 1.1 ## 264 1542 0 placebo 44.13963 f 0 1 1 0 3.4 ## 265 1084 0 placebo 46.38193 f 0 1 0 0 3.5 ## 266 1614 0 d_penicill_main 56.30938 f 0 0 0 0 0.5 ## 267 179 1 d_penicill_main 70.90760 f 1 1 1 1 6.6 ## 268 1191 1 d_penicill_main 55.39493 f 1 1 0 0.5 6.4 ## 269 1363 0 placebo 45.08419 f 0 0 0 0 3.6 ## 270 1568 0 d_penicill_main 26.27789 f 0 1 1 0 1.0 ## 271 1569 0 placebo 50.47228 f 0 1 0 0 1.0 ## 272 1525 0 d_penicill_main 38.39836 f 0 0 0 0 0.5 ## 273 1558 0 placebo 47.41958 f 0 0 1 0 2.2 ## 275 1349 0 d_penicill_main 38.31622 f 0 0 0 0 2.2 ## 276 1481 0 d_penicill_main 50.10815 f 0 0 0 0 1.0 ## 277 1434 0 placebo 35.08830 f 0 0 0 0.5 1.0 ## 278 1420 0 placebo 32.50376 f 0 0 0 0 5.6 ## 279 1433 0 placebo 56.15332 f 0 0 0 0 0.5 ## 280 1412 0 d_penicill_main 46.15469 f 0 0 0 0 1.6 ## 281 41 1 d_penicill_main 65.88364 f 1 0 0 1 17.9 ## 282 1455 0 placebo 33.94387 f 0 1 0 0 1.3 ## 283 1030 0 placebo 62.86105 f 0 0 0 0 1.1 ## 284 1418 0 placebo 48.56400 f 0 0 0 0 1.3 ## 285 1401 0 d_penicill_main 46.34908 f 0 0 0 0 0.8 ## 286 1408 0 d_penicill_main 38.85284 f 0 1 1 0 2.0 ## 287 1234 0 d_penicill_main 58.64750 f 0 0 1 0 6.4 ## 288 1067 0 placebo 48.93634 f 0 1 0 0.5 8.7 ## 289 799 1 d_penicill_main 67.57290 m 0 1 0 0.5 4.0 ## 290 1363 0 d_penicill_main 65.98494 f 0 0 0 0 1.4 ## 291 901 0 d_penicill_main 40.90075 f 0 0 0 0 3.2 ## 292 1329 0 placebo 50.24504 m 0 1 0 0 8.6 ## 293 1320 0 placebo 57.19644 f 0 1 1 1 8.5 ## 294 1302 0 d_penicill_main 60.53662 m 0 1 0 0 6.6 ## 295 877 0 d_penicill_main 35.35113 m 0 0 0 0 2.4 ## 296 1321 0 placebo 31.38125 f 0 0 0 0 0.8 ## 297 533 0 d_penicill_main 55.98631 m 0 1 0 0 1.2 ## 298 1300 0 placebo 52.72553 f 0 1 0 0 1.1 ## 299 1293 0 d_penicill_main 38.09172 f 0 0 0 0 2.4 ## 301 1295 0 placebo 45.21013 f 0 0 0 0 1.0 ## 302 1271 0 d_penicill_main 37.79877 f 0 0 0 0 0.7 ## 303 1250 0 placebo 60.65982 f 0 1 1 0 1.0 ## 304 1230 0 d_penicill_main 35.53457 f 0 0 0 0 0.5 ## 305 1216 0 placebo 43.06639 f 0 1 1 0 2.9 ## 306 1216 0 placebo 56.39151 f 0 1 0 0 0.6 ## 307 1149 0 placebo 30.57358 f 0 0 0 0 0.8 ## 308 1153 0 d_penicill_main 61.18275 f 0 1 0 0 0.4 ## 309 994 0 placebo 58.29979 f 0 0 0 0 0.4 ## 310 939 0 d_penicill_main 62.33265 f 0 0 0 0 1.7 ## 311 839 0 d_penicill_main 37.99863 f 0 0 0 0 2.0 ## 312 788 0 placebo 33.15264 f 0 0 1 0 6.4 ## chol albumin copper alk.phos ast trig platelet protime stage ## 1 261 2.60 156 1718.0 137.95 172 190 12.2 4 ## 2 302 4.14 54 7394.8 113.52 88 221 10.6 3 ## 3 176 3.48 210 516.0 96.10 55 151 12.0 4 ## 4 244 2.54 64 6121.8 60.63 92 183 10.3 4 ## 5 279 3.53 143 671.0 113.15 72 136 10.9 3 ## 7 322 4.09 52 824.0 60.45 213 204 9.7 3 ## 8 280 4.00 52 4651.2 28.38 189 373 11.0 3 ## 9 562 3.08 79 2276.0 144.15 88 251 11.0 2 ## 10 200 2.74 140 918.0 147.25 143 302 11.5 4 ## 11 259 4.16 46 1104.0 79.05 79 258 12.0 4 ## 12 236 3.52 94 591.0 82.15 95 71 13.6 4 ## 13 281 3.85 40 1181.0 88.35 130 244 10.6 3 ## 15 231 3.87 173 9009.8 127.71 96 295 11.0 3 ## 16 204 3.66 28 685.0 72.85 58 198 10.8 3 ## 17 274 3.15 159 1533.0 117.80 128 224 10.5 4 ## 18 178 2.80 588 961.0 280.55 200 283 12.4 4 ## 19 235 3.56 39 1881.0 93.00 123 209 11.0 3 ## 20 374 3.51 140 1919.0 122.45 135 322 13.0 4 ## 21 252 3.83 41 843.0 65.10 83 336 11.4 4 ## 22 271 3.63 464 1376.0 120.90 55 173 11.6 4 ## 23 395 2.94 558 6064.8 227.04 191 214 11.7 4 ## 24 456 4.00 124 5719.0 221.88 230 70 9.9 2 ## 25 298 4.10 40 661.0 106.95 66 324 11.3 2 ## 26 1128 3.68 53 3228.0 165.85 166 421 9.9 3 ## 27 175 3.31 221 3697.4 101.91 168 80 12.0 4 ## 28 222 3.23 209 1975.0 189.10 195 144 13.0 4 ## 29 370 3.78 24 5833.0 73.53 86 390 10.6 2 ## 30 260 2.54 172 7277.0 121.26 158 124 11.0 4 ## 31 296 3.44 114 9933.2 206.40 101 195 10.3 2 ## 32 262 3.34 101 7277.0 82.56 158 286 10.6 4 ## 33 210 3.19 82 1592.0 218.55 113 180 12.0 3 ## 34 364 3.70 37 1840.0 170.50 64 273 10.5 2 ## 35 314 3.20 201 12258.8 72.24 151 431 10.6 3 ## 36 172 3.39 18 558.0 71.30 96 311 10.6 2 ## 37 334 3.01 150 6931.2 180.60 118 102 12.0 4 ## 38 383 3.53 102 1234.0 137.95 87 234 11.0 4 ## 39 282 3.00 52 9066.8 72.24 111 563 10.6 4 ## 43 361 3.64 36 5430.2 67.08 89 203 10.6 2 ## 44 299 3.55 131 1029.0 119.35 50 199 11.7 3 ## 46 482 2.84 161 11552.0 136.74 165 518 12.7 3 ## 47 316 3.65 68 1716.0 187.55 71 356 9.8 3 ## 48 259 3.70 281 10396.8 188.34 178 214 11.0 3 ## 50 257 3.36 43 1080.0 106.95 73 128 10.6 4 ## 51 276 3.60 54 4332.0 99.33 143 273 10.6 2 ## 52 614 3.70 158 5084.4 206.40 93 362 10.6 1 ## 54 288 3.40 262 5487.2 73.53 125 254 11.0 4 ## 55 416 3.94 121 10165.0 79.98 219 213 11.0 3 ## 56 498 3.80 88 13862.4 95.46 319 365 10.6 2 ## 57 260 3.18 231 11320.2 105.78 94 216 12.4 3 ## 59 329 3.50 49 7622.8 126.42 124 321 10.6 3 ## 60 604 3.40 82 876.0 71.30 58 228 10.3 3 ## 61 216 3.94 28 601.0 60.45 188 211 13.0 1 ## 62 302 2.75 58 1523.0 43.40 112 329 13.2 4 ## 63 932 3.12 95 5396.0 244.90 133 165 11.6 3 ## 64 373 3.50 52 1009.0 150.35 188 178 11.0 3 ## 65 256 3.60 74 724.0 141.05 108 430 10.0 1 ## 66 427 3.70 105 1909.0 182.90 171 123 11.0 3 ## 67 466 3.91 84 1787.0 328.60 185 261 10.0 3 ## 68 174 4.09 58 642.0 71.30 46 203 10.6 3 ## 69 652 3.46 159 3292.0 215.45 184 227 12.4 3 ## 71 258 3.57 79 2201.0 120.90 76 410 11.5 4 ## 72 320 3.54 51 1243.0 122.45 80 225 10.0 3 ## 73 132 3.60 17 423.0 49.60 56 265 11.0 1 ## 74 558 3.99 280 967.0 89.90 309 278 11.0 4 ## 75 674 2.53 207 2078.0 182.90 598 268 11.5 4 ## 76 394 3.08 111 2132.0 155.00 243 165 11.6 4 ## 77 244 3.41 199 1819.0 170.50 91 132 12.1 3 ## 78 436 3.02 75 2176.0 170.50 104 236 10.6 4 ## 79 315 4.24 13 1637.0 170.50 70 426 10.9 3 ## 80 247 3.72 269 1303.0 176.70 91 360 11.2 4 ## 81 448 3.65 34 1218.0 60.45 318 385 11.7 4 ## 82 472 4.09 154 1580.0 117.80 272 412 11.1 3 ## 83 250 3.50 48 1138.0 71.30 100 81 12.9 4 ## 84 263 3.76 29 1345.0 137.95 74 181 11.2 3 ## 85 262 3.48 58 2045.0 89.90 84 225 11.5 4 ## 86 1600 3.21 75 2656.0 82.15 174 181 10.9 3 ## 87 345 4.40 75 1860.0 218.55 72 447 10.7 3 ## 88 296 4.06 37 1032.0 80.60 83 442 12.0 3 ## 89 408 3.65 50 1083.0 110.05 98 200 11.4 2 ## 90 660 4.22 94 1857.0 151.90 155 337 11.0 2 ## 91 325 3.47 110 2460.0 246.45 56 430 11.9 4 ## 92 206 3.13 36 1626.0 86.80 70 145 12.2 4 ## 93 353 3.67 73 2039.0 232.50 68 380 11.1 2 ## 94 201 3.11 178 1212.0 159.65 69 188 11.8 4 ## 97 420 3.26 62 3196.0 77.50 91 344 11.4 3 ## 98 239 3.77 77 1877.0 97.65 101 312 10.2 1 ## 99 460 3.35 148 1472.0 108.50 118 172 10.2 2 ## 100 178 3.00 145 746.0 178.25 122 119 12.0 4 ## 101 400 3.60 31 1689.0 164.30 166 327 10.4 3 ## 102 248 3.97 172 646.0 62.00 84 128 10.1 1 ## 103 188 3.67 57 1273.0 119.35 102 110 11.1 4 ## 104 303 3.64 20 2108.0 128.65 53 349 11.1 2 ## 105 464 4.20 38 1644.0 151.90 102 348 10.3 3 ## 107 212 4.03 10 648.0 71.30 77 316 17.1 1 ## 108 127 3.50 14 1062.0 49.60 84 334 10.3 2 ## 109 120 3.61 53 804.0 110.05 52 271 10.6 3 ## 110 486 3.54 74 1052.0 108.50 109 141 10.9 3 ## 111 528 4.18 77 2404.0 172.05 78 467 10.7 3 ## 112 267 3.67 89 754.0 196.85 90 136 11.8 4 ## 113 374 3.74 103 979.0 128.65 100 266 11.1 4 ## 114 259 4.30 208 1040.0 110.05 78 268 11.7 3 ## 115 303 4.19 81 1584.0 111.60 156 307 10.3 3 ## 116 458 3.63 74 1588.0 106.95 382 438 9.9 3 ## 117 950 3.11 111 2374.0 170.50 149 354 11.0 4 ## 118 390 3.30 67 878.0 137.95 93 207 10.2 3 ## 119 636 3.83 129 944.0 97.65 114 306 9.5 3 ## 120 325 3.98 444 766.0 130.20 210 344 10.6 3 ## 121 151 3.08 73 1112.0 46.50 49 213 13.2 4 ## 122 298 4.13 29 758.0 65.10 85 256 10.7 3 ## 124 251 3.90 25 681.0 57.35 107 182 10.8 4 ## 125 316 3.51 75 1162.0 147.25 137 238 10.0 4 ## 127 268 4.08 9 1174.0 86.80 95 453 10.0 2 ## 130 1775 3.43 205 2065.0 165.85 97 418 11.5 3 ## 131 242 3.80 74 614.0 136.40 104 121 13.2 4 ## 132 448 3.83 60 1052.0 127.10 175 181 9.8 3 ## 133 331 3.95 13 577.0 128.65 99 165 10.1 4 ## 134 578 3.67 35 1353.0 127.10 105 427 10.7 2 ## 135 263 3.57 123 836.0 74.40 121 445 11.0 2 ## 136 263 3.35 27 1636.0 116.25 69 206 9.8 2 ## 137 399 3.60 79 3472.0 155.00 152 344 10.1 2 ## 138 426 3.93 262 2424.0 145.70 218 252 10.5 3 ## 139 328 3.31 159 1260.0 94.55 134 142 11.6 4 ## 140 290 4.09 38 2120.0 186.00 146 318 10.0 3 ## 141 346 3.77 59 794.0 125.55 56 336 10.6 2 ## 142 364 3.48 20 720.0 134.85 88 283 9.9 2 ## 143 332 3.60 86 1492.0 134.85 103 277 11.0 4 ## 144 556 3.26 152 3896.0 198.40 171 335 10.0 3 ## 145 309 3.84 96 858.0 41.85 106 253 11.4 3 ## 147 288 3.37 32 791.0 57.35 114 213 10.7 2 ## 148 1015 3.26 247 3836.0 198.40 280 330 9.8 3 ## 149 257 3.79 290 1664.0 102.30 112 140 9.9 4 ## 151 460 3.03 57 721.0 85.25 174 301 9.4 2 ## 152 586 3.01 243 2276.0 114.70 126 339 10.9 3 ## 153 217 3.85 68 453.0 54.25 68 270 11.1 1 ## 154 168 2.56 225 1056.0 120.90 75 108 14.1 3 ## 155 220 3.35 57 1620.0 153.45 80 311 11.2 4 ## 156 358 3.52 219 2468.0 201.50 205 151 11.5 2 ## 157 286 3.42 34 1868.0 77.50 206 487 10.0 2 ## 158 450 3.37 32 1408.0 116.25 118 313 11.2 2 ## 159 317 3.46 217 714.0 130.20 140 207 10.1 3 ## 160 217 3.62 13 414.0 75.95 119 224 10.5 3 ## 161 502 3.56 4 964.0 120.90 180 269 9.6 2 ## 162 260 3.19 91 815.0 127.10 101 160 12.0 4 ## 163 233 4.08 20 622.0 66.65 68 358 9.9 3 ## 165 196 3.45 80 2496.0 133.30 142 212 11.3 4 ## 166 1480 3.26 84 1960.0 457.25 108 213 9.5 2 ## 167 376 3.86 200 1015.0 83.70 154 238 10.3 4 ## 169 408 4.22 67 1387.0 142.60 137 295 10.1 3 ## 170 390 3.61 32 1509.0 88.35 52 263 9.0 3 ## 172 205 3.34 65 1031.0 91.45 126 217 9.8 3 ## 173 236 3.42 76 1403.0 89.90 86 493 9.8 2 ## 175 283 3.80 152 718.0 108.50 168 340 10.1 3 ## 177 258 4.01 49 559.0 43.40 133 277 10.4 2 ## 179 396 3.83 39 2148.0 102.30 133 278 9.9 4 ## 180 478 4.38 44 1629.0 237.15 76 175 10.4 3 ## 181 248 3.58 63 554.0 75.95 106 79 10.3 4 ## 183 201 3.73 44 1345.0 54.25 145 445 10.1 2 ## 184 674 3.55 358 2412.0 167.40 140 471 9.8 3 ## 185 256 3.54 42 1132.0 74.40 94 192 10.5 3 ## 186 225 3.53 51 933.0 69.75 62 200 12.7 3 ## 187 808 3.43 251 2870.0 153.45 137 268 11.5 3 ## 188 187 3.48 41 654.0 120.90 98 164 11.0 4 ## 189 360 3.63 52 1812.0 97.65 164 256 9.9 3 ## 191 1092 3.35 233 3740.0 147.25 432 399 15.2 4 ## 192 308 3.69 67 696.0 51.15 101 344 9.8 4 ## 193 932 3.19 267 2184.0 161.20 157 382 10.4 4 ## 194 293 4.30 50 975.0 125.55 56 336 9.1 2 ## 195 347 3.90 76 2544.0 221.65 90 129 11.5 4 ## 196 226 3.36 13 810.0 72.85 62 117 11.6 4 ## 197 266 3.97 25 1164.0 102.30 102 201 10.1 2 ## 198 286 2.90 38 1692.0 141.05 90 381 9.6 2 ## 199 392 3.43 52 1395.0 184.45 194 328 10.2 3 ## 200 236 3.55 112 1391.0 137.95 114 332 9.9 3 ## 201 235 3.20 26 1758.0 106.95 67 228 10.8 4 ## 202 223 3.80 15 1044.0 80.60 89 514 10.0 2 ## 203 149 4.04 227 598.0 52.70 57 166 9.9 2 ## 204 255 3.74 23 1024.0 77.50 58 281 10.2 3 ## 206 213 4.07 12 5300.0 57.35 68 240 11.0 1 ## 208 396 3.20 58 1440.0 153.45 131 156 10.0 4 ## 209 252 4.01 11 1210.0 72.85 58 309 9.5 2 ## 210 346 3.37 81 1098.0 122.45 90 298 10.0 2 ## 212 232 3.98 11 1074.0 100.75 99 223 9.9 3 ## 213 400 3.40 9 1134.0 96.10 55 356 10.2 3 ## 214 404 3.43 34 1866.0 79.05 224 236 9.9 3 ## 215 1276 3.85 141 1204.0 203.05 157 216 10.7 3 ## 217 608 3.31 65 1790.0 151.90 210 298 10.8 4 ## 219 215 4.17 67 936.0 134.85 85 176 9.6 3 ## 220 426 3.22 96 2716.0 210.80 113 228 10.6 2 ## 221 360 3.65 72 3186.0 94.55 154 269 9.7 4 ## 222 372 3.38 227 2310.0 167.40 135 240 12.4 3 ## 223 448 2.43 123 1833.0 134.00 155 210 11.0 4 ## 224 309 3.66 67 1214.0 158.10 101 309 9.7 3 ## 225 274 3.66 108 1065.0 88.35 135 251 10.1 2 ## 226 223 3.70 39 884.0 75.95 104 231 9.6 3 ## 227 316 3.35 172 1601.0 179.80 63 394 9.7 2 ## 228 215 3.35 41 645.0 93.00 74 165 9.6 3 ## 229 191 3.05 200 1020.0 175.15 118 139 11.4 4 ## 230 302 3.41 51 310.0 83.70 44 95 11.5 4 ## 231 518 1.96 115 2250.0 203.05 90 190 10.7 4 ## 232 267 3.02 47 1001.0 133.30 87 265 10.6 3 ## 233 514 3.06 412 2622.0 105.40 87 284 9.8 4 ## 234 578 3.35 78 976.0 116.25 177 322 11.2 2 ## 235 1336 4.16 71 3510.0 209.25 111 338 11.9 3 ## 236 253 3.79 67 1006.0 139.50 106 341 9.7 3 ## 237 442 2.95 105 820.0 85.25 108 181 10.1 3 ## 239 300 2.94 231 1794.0 130.20 99 319 11.2 4 ## 240 232 3.72 24 369.0 51.15 139 326 10.1 3 ## 241 316 3.62 308 1119.0 114.70 322 282 9.8 4 ## 242 354 2.97 86 1553.0 196.85 152 277 9.9 3 ## 243 468 2.81 139 2009.0 198.40 139 233 10.0 4 ## 244 350 3.22 121 1268.0 272.80 231 270 9.6 3 ## 245 273 3.65 48 794.0 52.70 214 305 9.6 3 ## 246 387 3.77 63 1613.0 150.35 33 185 10.1 4 ## 247 1712 2.83 89 3681.0 158.10 139 297 10.0 3 ## 248 324 3.51 39 1237.0 66.65 146 371 10.0 3 ## 249 242 3.20 35 1556.0 175.15 71 195 10.6 4 ## 250 299 3.36 23 2769.0 220.10 85 303 10.9 4 ## 251 227 3.61 40 676.0 83.00 120 249 9.9 2 ## 252 246 3.35 116 924.0 113.15 90 317 10.0 4 ## 253 243 3.03 380 983.0 158.10 154 97 11.2 4 ## 254 227 3.75 121 1136.0 110.00 91 264 10.0 3 ## 255 193 3.85 35 466.0 53.00 118 156 10.3 3 ## 256 336 3.74 48 823.0 84.00 108 242 9.7 3 ## 257 280 4.23 36 377.0 56.00 146 227 10.6 2 ## 258 414 3.44 80 1003.0 99.00 55 271 9.6 1 ## 259 277 2.97 42 1110.0 125.00 126 221 9.8 3 ## 260 232 3.59 188 1120.0 98.00 128 248 10.9 4 ## 262 322 3.06 65 2562.0 91.00 209 231 9.5 3 ## 263 432 3.57 45 1406.0 190.00 77 248 11.4 4 ## 264 356 3.12 188 1911.0 92.00 130 318 11.2 3 ## 265 348 3.20 121 938.0 120.00 146 296 10.0 4 ## 266 318 3.32 52 613.0 70.00 260 279 10.2 3 ## 267 222 2.33 138 620.0 106.00 91 195 12.1 4 ## 268 344 2.75 16 834.0 82.00 179 149 11.0 4 ## 269 374 3.50 143 1428.0 188.00 44 151 10.1 2 ## 270 448 3.74 102 1128.0 71.00 117 228 10.2 3 ## 271 321 3.50 94 955.0 111.00 177 289 9.7 3 ## 272 226 2.93 22 674.0 58.00 85 153 9.8 1 ## 273 328 3.46 75 1677.0 87.00 116 202 9.6 3 ## 275 572 3.77 77 2520.0 92.00 114 309 9.5 4 ## 276 219 3.85 67 640.0 145.00 108 95 10.7 2 ## 277 317 3.56 44 1636.0 84.00 111 394 9.8 3 ## 278 338 3.70 130 2139.0 185.00 193 215 9.9 4 ## 279 198 3.77 38 911.0 57.00 56 280 9.8 2 ## 280 325 3.69 69 2583.0 142.00 140 284 9.6 3 ## 281 175 2.10 220 705.0 338.00 229 62 12.9 4 ## 282 304 3.52 97 1622.0 71.00 169 255 9.5 4 ## 283 412 3.99 103 1293.0 91.00 113 422 9.6 4 ## 284 291 3.44 75 1082.0 85.00 195 251 9.5 3 ## 285 253 3.48 65 688.0 57.00 80 252 10.0 1 ## 286 310 3.36 70 1257.0 122.00 118 143 9.8 3 ## 287 373 3.46 155 1768.0 120.00 151 258 10.1 4 ## 288 310 3.89 107 637.0 117.00 242 298 9.6 2 ## 289 416 3.99 177 960.0 86.00 242 269 9.8 2 ## 290 294 3.57 33 722.0 93.00 69 283 9.8 3 ## 291 339 3.18 123 3336.0 205.00 84 304 9.9 4 ## 292 546 3.73 84 1070.0 127.00 153 291 11.2 3 ## 293 194 2.98 196 815.0 163.00 78 122 12.3 4 ## 294 1000 3.07 88 3150.0 193.00 133 299 10.9 4 ## 295 646 3.83 102 855.0 127.00 194 306 10.3 3 ## 296 328 3.31 62 1105.0 137.00 95 293 10.9 4 ## 297 275 3.43 100 1142.0 75.00 91 217 11.3 4 ## 298 340 3.37 73 289.0 97.00 93 243 10.2 3 ## 299 342 3.76 90 1653.0 150.00 127 213 10.8 3 ## 301 393 3.57 50 1307.0 74.00 103 295 10.5 4 ## 302 335 3.95 43 657.0 52.00 104 268 10.6 2 ## 303 372 3.25 108 1190.0 140.00 55 248 10.6 4 ## 304 219 3.93 22 663.0 45.00 75 246 10.8 3 ## 305 426 3.61 73 5184.0 288.00 144 275 10.6 3 ## 306 239 3.45 31 1072.0 55.00 64 227 10.7 2 ## 307 273 3.56 52 1282.0 130.00 59 344 10.5 2 ## 308 246 3.58 24 797.0 91.00 113 288 10.4 2 ## 309 260 2.75 41 1166.0 70.00 82 231 10.8 2 ## 310 434 3.35 39 1713.0 171.00 100 234 10.2 2 ## 311 247 3.16 69 1050.0 117.00 88 335 10.5 2 ## 312 576 3.79 186 2115.0 136.00 149 200 10.8 2 ## ## attr(,"mtry") ## [1] 5 ## attr(,"n_obs") ## [1] 276 ## attr(,"n_tree") ## [1] 1 ## attr(,"names_y") ## [1] "time" "status" ## attr(,"names_x") ## [1] "trt" "age" "sex" "ascites" "hepato" "spiders" ## [7] "edema" "bili" "chol" "albumin" "copper" "alk.phos" ## [13] "ast" "trig" "platelet" "protime" "stage" ## attr(,"names_x_ref") ## [1] "trt_placebo" "age" "sex_f" "ascites_1" "hepato_1" ## [6] "spiders_1" "edema_0.5" "edema_1" "bili" "chol" ## [11] "albumin" "copper" "alk.phos" "ast" "trig" ## [16] "platelet" "protime" "stage" ## attr(,"types_x") ## [1] "factor" "numeric" "factor" "factor" "factor" "factor" "factor" ## [8] "numeric" "integer" "numeric" "integer" "numeric" "numeric" "integer" ## [15] "integer" "numeric" "ordered" ## attr(,"n_events") ## [1] 111 ## attr(,"max_time") ## [1] 4556 ## attr(,"unit_info") ## list() ## attr(,"fctr_info") ## attr(,"fctr_info")$cols ## [1] "trt" "sex" "ascites" "hepato" "spiders" "edema" "stage" ## ## attr(,"fctr_info")$lvls ## attr(,"fctr_info")$lvls$trt ## [1] "d_penicill_main" "placebo" ## ## attr(,"fctr_info")$lvls$sex ## [1] "m" "f" ## ## attr(,"fctr_info")$lvls$ascites ## [1] "0" "1" ## ## attr(,"fctr_info")$lvls$hepato ## [1] "0" "1" ## ## attr(,"fctr_info")$lvls$spiders ## [1] "0" "1" ## ## attr(,"fctr_info")$lvls$edema ## [1] "0" "0.5" "1" ## ## attr(,"fctr_info")$lvls$stage ## [1] "1" "2" "3" "4" ## ## ## attr(,"fctr_info")$keys ## attr(,"fctr_info")$keys$trt ## [1] "trt_d_penicill_main" "trt_placebo" ## ## attr(,"fctr_info")$keys$sex ## [1] "sex_m" "sex_f" ## ## attr(,"fctr_info")$keys$ascites ## [1] "ascites_0" "ascites_1" ## ## attr(,"fctr_info")$keys$hepato ## [1] "hepato_0" "hepato_1" ## ## attr(,"fctr_info")$keys$spiders ## [1] "spiders_0" "spiders_1" ## ## attr(,"fctr_info")$keys$edema ## [1] "edema_0" "edema_0.5" "edema_1" ## ## attr(,"fctr_info")$keys$stage ## NULL ## ## ## attr(,"fctr_info")$ordr ## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE ## ## attr(,"n_leaves_mean") ## [1] 25 ## attr(,"n_split") ## [1] 5 ## attr(,"leaf_min_events") ## [1] 1 ## attr(,"leaf_min_obs") ## [1] 5 ## attr(,"split_min_events") ## [1] 5 ## attr(,"split_min_obs") ## [1] 10 ## attr(,"split_min_stat") ## [1] 3.841459 ## attr(,"cph_method") ## [1] "efron" ## attr(,"cph_eps") ## [1] 1e-09 ## attr(,"cph_iter_max") ## [1] 1 ## attr(,"cph_do_scale") ## [1] TRUE ## attr(,"net_alpha") ## [1] 0.5 ## attr(,"net_df_target") ## [1] 5 ## attr(,"numeric_bounds") ## age bili chol albumin copper alk.phos ast trig platelet ## 10% 35.66324 0.600 212.5 3.0100 25.50 659.00 61.3150 63.50 142.50 ## 25% 41.51266 0.800 249.5 3.3100 42.75 922.50 82.4575 85.00 200.00 ## 50% 49.70979 1.400 310.0 3.5450 74.00 1277.50 116.6250 108.00 257.00 ## 75% 56.58453 3.525 401.0 3.7725 129.25 2068.25 153.4500 151.25 318.25 ## 90% 62.88433 7.250 567.0 4.0100 213.50 3788.00 197.6250 195.00 383.50 ## protime ## 10% 9.7 ## 25% 10.0 ## 50% 10.6 ## 75% 11.2 ## 90% 12.0 ## attr(,"trained") ## [1] TRUE ## attr(,"n_retry") ## [1] 3 ## attr(,"orsf_type") ## [1] "cph" ## attr(,"f_beta") ## function(x) x ## <bytecode: 0x0000000019536b70> ## <environment: 0x0000000022999498> ## attr(,"f_oobag_eval") ## function(x) x ## <bytecode: 0x0000000019533388> ## <environment: 0x0000000022999498> ## attr(,"type_oobag_eval") ## [1] "H" ## attr(,"oobag_pred") ## [1] TRUE ## attr(,"oobag_eval_every") ## [1] 1 ## attr(,"importance") ## [1] "anova" ## attr(,"weights_user") ## numeric(0) ## attr(,"tree_seeds") ## integer(0) ``` --- ## Your guide to a friendly modeling package [click here](https://tidymodels.github.io/model-implementation-principles/) to view this book from `tidymodels` online <iframe src="https://tidymodels.github.io/model-implementation-principles/index.html" width="100%" height="400px" data-external="1"></iframe> --- ## Thank you! Incredible team members: - `aorsf`: Sawyer Welden, Kristin Lenoir, Jaime L. Speiser, Matthew W. Segar, Ambarish Pandey, and Nicholas M. Pajewski - today's talk: Jaime Lynn Speiser, Joseph Rigdon, Heather Marie Shappell, Nathaniel Sean O'Connell, and Michael Kattan. -- Research reported in this presentation was supported<sup>1</sup> by - Center for Biomedical Informatics, Wake Forest University School of Medicine. - National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through Grant Award Number UL1TR001420. .footnote[ <sup>1</sup> The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. ]