Bin predicted risk for plotting

predrisk_bin_segments(
  x,
  event_time = NULL,
  event_status = NULL,
  pred_horizon = NULL,
  by_event = FALSE,
  bin_count = 100,
  bin_yintercept = 0,
  bin_length = 1
)

Arguments

x

a numeric vector of predicted risk values or an object of class scalib. If x is a scalib object, then the input arguments event_time, event_status, and pred_horizon should be left blank. (They are filled in using info stored in the scalib object).

event_time

(numeric vector) observed event times

event_status

(numeric vector) observed event status. The values of this vector should be 0 (event censored) and 1 (event observed).

pred_horizon

(numeric value) the time of risk prediction.

by_event

If TRUE, bins will be created for each event type, separately. If FALSE, bins are made in the standard fashion for histograms.

bin_count

(integer value) total count of bins for downstream plots

bin_yintercept

(numeric value) where, relative to the y-axis, the bins should originate from on downstream plots.

bin_length

(numeric value) the length of the bins on downstream plots.

Value

a data.frame object with values that can be plugged into standard plotting tools, e.g., ggplot2::ggplot() (see examples).

Examples


sc <- scalib(pred_risk = pbc_scalib$predrisk,
             pred_horizon = 2500,
             event_time = pbc_scalib$test$time,
             event_status = pbc_scalib$test$status)

pbins <- predrisk_bin_segments(sc)

print(pbins)
#>           ._id_.           x y        xend        yend
#>   1: prop_hazard 0.006691434 0 0.006691434 0.017391304
#>   2: prop_hazard 0.016624520 0 0.016624520 0.008695652
#>   3: prop_hazard 0.026557605 0 0.026557605 0.030434783
#>   4: prop_hazard 0.036490691 0 0.036490691 0.026086957
#>   5: prop_hazard 0.046423777 0 0.046423777 0.017391304
#>  ---                                                  
#> 396: rsf_oblique 0.905950677 0 0.905950677 0.012500000
#> 397: rsf_oblique 0.914816484 0 0.914816484 0.025000000
#> 398: rsf_oblique 0.923682290 0 0.923682290 0.012500000
#> 399: rsf_oblique 0.932548097 0 0.932548097 0.000000000
#> 400: rsf_oblique 0.941413904 0 0.941413904 0.050000000

pbins <- predrisk_bin_segments(x = pbc_scalib$predrisk$prop_hazard,
                               event_time = pbc_scalib$test$time,
                               event_status = pbc_scalib$test$status)